

Introduction

Although I’ve been tinkering with python for my Data Science projects since 2016, I only started coding professionally at the end of 2018. It wasn’t easy to get accustomed to the workflow by any means and the rigor of a production and test driven environment was something completely different from what I was used to 😓. I had only been using all the tools and packages integrated into the amazing Anaconda Distribution which means Spyder as the IDE and the trusted old Jupyter Notebook for experimentation. I still use jupyter notebook, however, I’ve picked up VS Code as my primary editor not only due to the fact that everyone at my workplace uses that but also in my opinion it’s one of the best language agnostic code editor, period 😁. So this post is an assortment of all the tools and practices that I’ve picked up throughout my development journey🔥.

Here I’m using Linux as my primary development OS and many of the instructions apply directly to MacOS also. However, if you are doing python in VS Code on MacOS or Windows, I encourage you contribute and extend this guideline. Now let’s jump in 🦘.

Table of Contents 🚀🚀

	Setting up VS Code on Your Machine 🐶
	Installing VS Code

	Running VS Code

	Using the Integrated Terminal

	Setting up Environments 🌲
	Why Environments are Necessary

	Conda Environment
	Installing Anaconda Distribution

	Creating Conda Environment

	Activating Conda Environment

	Deactivating Conda Environment

	Virtual Environment
	Installing python3-venv

	Creating Virtual Environments

	Activating Virtual Environments

	Deactivating Virtual Environment

	Selecting & Switching Between the Environments in VS Code

	Installing Third Party Packages

	Running Python Scripts with Code Runner 🏃
	Installing Code Runner Extension

	Setting up Code Runner

	Running Python Scripts

	Linting & Formatting 🎀
	Flake8

	Black

	Setting Up Linters in VS Code

	Shortcuts and Keymaps 💻
	Changing the Default Keymaps
	Adopting Keymaps from Other Editors

	A Few Important Shortcuts (On Linux)

	Themes 🐙
	Awesome Dark Themes

	Awesome Light Themes

	Installing Themes

	Fonts 🕹️
	List of Awesome Fonts
	Free Fonts

	Paid Fonts

	Installing Fonts
	On Ubuntu

	Extensions 🤖

	Settings ⚙️
	Syncing Your Settings & Extensions

	Shut up & Let Me Replicate Your Settings

	Customizing the Settings According to Your Need

Indices and Tables

	Index

	Module Index

	Search Page

Setting up VS Code on Your Machine 🐶

Installing VS Code

Installing VS code is easy across all operating systems.

	Just go to the link here [https://code.visualstudio.com/Download] and select the distribution that corresponds to your OS.

	Download the file and install

Running VS Code

	After you’ve completed the installation, open terminal and cd to your project folder. Then type:

$ code .

This will open your project in VS Code. Familiarize yourself with the GUI if you’re using this for the first time. The left most stripe gives you multiple options and hovering over the icons will show you their corresponding functionalites. If you’re using any third party extensions, their icons may also appear. Clicking on each of them will bring up extra actions in the succeeding column.

The default icons are (from top to bottom):

	Explorer

	Search

	Source Control (Git)

	Debug

	Extensions

[image: img]

Using the Integrated Terminal

If you aren’t migrating from any other terminal and haven’t set up your preferred keybindings then you can open the integrated terminal by pressing ctrl + ~ on your keyboard. This terminal is an exact replica of your bash/zsh terminal and can perform almost anything that you’d normally do in those. From now an on, unless explicitly mentioned otherwise, we’ll be using the integrated terminal for the versatility and convenience it provides.

[image: Imgur]

Setting up Environments 🌲

Why Environments are Necessary

The main purpose of using environments is to create a segregation between the dependencies of different python projects. It eliminates (at least tries to) dependency conflicts since each project has it’s own set of dependencies, isolated from one another.

Suppose you are working on two projects, Project_1 and Project_2, both of which have a dependency on the same library, let’s say the awesome Requests library. Dependency conflict will arise, if for some reason, the two projects need different versions of Request library. For example, maybe Project_1 needs v1.0.0, while Project_2 requires the newer v2.0.0.

This can easily be avoided by using individual environment for each project where all the dependencies of the corresponding project will reside. There are multiple ways you can create environment. We’ll mainly focus on creating python3 based conda environment and native virtual environment.

Conda Environment

Installing Anaconda Distribution

Install anaconda on your machine. I personally prefer miniconda over the full fledged anaconda. The installation guide can be found here:

	Linux [https://docs.anaconda.com/anaconda/install/linux/]

	MacOS [https://docs.anaconda.com/anaconda/install/mac-os/]

Creating Conda Environment

After installing anaconda, to create a python3 environment with a specific version of python, type the following command. This will create an environemnt named myenv with python 3.7:

$ conda create -n myenv python=3.7

Activating Conda Environment

After creating the conda environment, type the folling command to activate the myenv environment:

$ conda activate myenv

Deactivating Conda Environment

To deactivate, simply type:

$ conda deactivate

Virtual Environment

Installing python3-venv

To create virtual environment, first you need to install python3-venv. Run:

$ sudo apt update
$ sudo apt-get install python3-venv

Creating Virtual Environments

Create a virtual environment named myenv via running:

$ python3 -m venv myenv

You should see a folder named myenv in your current directory. This is the folder where all your project-specific dependencies are going to reside.

Activating Virtual Environments

To activate myenv, run:

$ source myenv/bin/activate

Deactivating Virtual Environment

To deactivate, simply type:

$ deactivate

Selecting & Switching Between the Environments in VS Code

	Press ctrl+shift+P to open VS Code’s command palette. You should be seeing something like this:

[image: Imgur]

	Type interpreter in the search box. And select the Python: Select Interpreter option. You should see a list of all the available (both conda and virtual environments are shown) python environments. You should also see your recently created myenv environment there. Toggle and select your environment and you are good to go.

[image: Imgur]

Installing Third Party Packages

To install third party packages/libraries/moduels from pip or conda,

	Activate your respective environments

	Depending on the package manager you want to use, type either:

$ pip install <package_name>

or

conda install <package_name>

[image: Imgur]

Running Python Scripts with Code Runner 🏃

Installing Code Runner Extension

Click the extension icon on the left most stripe and type code runner in the search bar. You should see the extension popping up in the first row. Click and install.

[image: Imgur]

Setting up Code Runner

By default, code runner uses its own panel for showing the results after you run your python script. However, it’s better to set it up in a way that it will show the results in the integrated terminal.

	Press ctrl+, to open up the settings panel

	On the search bar type code runner terminal

	You should be able to see an option named Code-runner: Run In Terminal

	Check off the option and you are good to go 🍰

[image: Imgur]

Running Python Scripts

	Create and select your python environment (See the instructions here. [https://py-vscode.readthedocs.io/en/latest/files/venv.html])

	Create a new file via ctrl+N

	Press ctrl+s to save the file and give it a name with .py extension

	Write down your python code in the file

	Press ctrl+alt+N to run the code via Code Runner

	You should see your results in the integrated terminal 🛬

	To run only a selected lines of codes, select the lines you want to run and press ctrl+alt+N.

[image: Imgur]

Linting & Formatting 🎀

Linters perform static analysis of source codes and check for symantic discrepancies. When you lint your code, it’s passed through a basic quality checking tool that provides instructions on how eliminate basic syntactic inconsistencies.

Formatters are similar tools that tries to restructure your code spacing, line length, argument positioning etc to ensure that your code looks consistent across different files or projects.

Python offers you a plethora of linters and formatters to choose from. Flake8, pyflakes, pycodestyle, pylint are some of the more widely used linters and black, yapf are two newer members in the code formatting space.
However, not to bombard you with a deluge of information, we are taking an opinionated route that gets the job done without a hitch. Let’s talk about Flake8 and Black.

Flake8

Flake8 is a Python linting library that basically wraps three other linters, PyFlakes, pycodestyle and Ned Batchelder’s McCabe Script. It’s one of the better linters out there that has very low false positive rate.
It checks your code base against PEP8 [https://www.python.org/dev/peps/pep-0008/] programming style, programming errors (like “library imported but unused” and “Undefined name”) and cyclomatic complexity [https://en.wikipedia.org/wiki/Cyclomatic_complexity].

[image: Imgur]

For more details on the nitty gritties of flake8, check out their github project here. [https://github.com/PyCQA/flake8]

Black

Black is known as the uncompromised Python code formatter. Unlike flake8 or pycodestyle, it doesn’t nag you when there are style inconsistencies. It just fixes them for you. Black does not have a lot of options to tinker with and has a lot of opinion on how your code should look and feel. You might not always agree with the decisions that black takes for you but if you can get along with the style that black imposes on you, it can take care of the unnecessary hassles of formatting your codes to keep it conistent across multiple projects or organization.

[image: Imgur]
Before formatting with black

[image: Imgur]
After formatting with black

Setting Up Linters in VS Code

Luckily VS Code comes with both flake8 and black formatter lurking in the settings. To set them up:

	Press ctrl+, to fire up the settings panel

	Search for flake8 in the search panel

	Enable the option Python>Linting:Flake8 Enabled

	Search for black and select black from the dropdown called Python>Formatting:Provider

Doing the above will set flake8 and black to lint and format your script on a project basis. You have to install flake8 and black in your environment via pip install flake8 and pip install black respectively. If you want to set them up globally and don’t want to worry about formatting ever again, you have set up their global paths. To do so:

	Deactivate your environment

	Install flake8 and black globally via pip3 install flake8 and pip3 install black

	On the terminal write whereis flake8 and whereis black

	You should see their global paths
[image: Imgur]

	Now go to the settings and search for flake8 and paste your flake8 path in Python › Linting: Flake8 Path option
[image: Imgur]

	Copy black path and paste them in Python › Formatting: Black Path option
[image: Imgur]

Shortcuts and Keymaps 💻

VS Code is loaded with customization options and shortcuts. Default shortcuts can vary between different operating systems. However, you can always change those according to your likings. You can even adopt other editors’ keybindings into VS Code.

Changing the Default Keymaps

	Open the command palette by pressing ctrl+shift+p.

	Type Keyboard shortcuts.

	Select Preferences: Open Keyboard Shortcuts. This will show you a list of all the keyboard shortcuts available to you.

	You can hover over a keybinding and a pencil icon should pop up.

	Click on the pencil icon to add your preferred key combination and press enter.

[image: Imgur]

Adopting Keymaps from Other Editors

If you are migrating from any other editors and you want to use you previous keymaps, you can do that too.

	Go to the extension panel.

	Type <yourdesirededitor> keymaps.

	Select and install. This should replace the default keymap with your desired one.

A Few Important Shortcuts (On Linux)

Although the abundance of shorcuts can be a plus,it can be intimidating for someone who’s just starting out. Here’s a short list of a few important shortcuts that appear more frequently.

	ctrl+~ : Opens the integrated terminal

	ctrl+N : Opens a new empty file

	ctrl+Shift+P : Opens the command palette

	ctrl+, : Opens settings

	ctrl+B : Toggles between shrinked and extended side panel

	F11 : Full screen mode

	ctrl+alt+N : Running python code

	F5 : Running python code in debugging mode

Themes 🐙

Here is a list of some awesome vs code themes that I have encountered over the year. Currently I’m using Cobalt2. You can use this [https://vscodethemes.com/] website for searching and watching previews of the themes.

Awesome Dark Themes

	Cobalt2 [https://github.com/wesbos/cobalt2-vscode]

	Panda Syntax [https://github.com/tinkertrain/panda-syntax-vscode]

	Dracula [https://github.com/dracula/visual-studio-code]

	Darcula [https://github.com/rokoroku/vscode-theme-darcula]

	TruBoo [https://github.com/ajtruex/TruBoo.git]

	Night Owl [https://github.com/sdras/night-owl-vscode-theme]

	Ayu Mirage [https://github.com/jsenjoy/vscode-ayu]

	Noctis [https://github.com/liviuschera/noctis]

	Shades of Purple [https://github.com/ahmadawais/shades-of-purple-vscode]

	Noctis [https://github.com/liviuschera/noctis]

Awesome Light Themes

	Winter is Coming [https://github.com/johnpapa/vscode-winteriscoming.git]

	Github Plus [https://github.com/thenikso/github-plus-theme]

	Min Light [https://github.com/misolori/min-theme.git]

	Braver Solerized [https://github.com/braver/vscode-solarized.git]

	Boxy Theme Kit [https://github.com/trongthanh/vscode-boxythemekit]

Installing Themes

Installing procedure for a theme is same as installing any other extension.

	From the left most stripe select extension icon

	Type your desired extension name

	Press install

[image: Imgur]

Fonts 🕹️

Monospace fonts are better optimized for code readability and alignment. Here is a list of awesome coding fonts that I’ve used in the past. But I always come back to Fira Code.

List of Awesome Fonts

Free Fonts

	Fira Code [https://github.com/tonsky/FiraCode]

	Hack [https://github.com/source-foundry/Hack]

	Monoid [https://github.com/larsenwork/monoid]

	Hasklig [https://github.com/i-tu/Hasklig]

	Input Mono [https://github.com/powerline/fonts/tree/master/InputMono]

	Office Code Pro [https://github.com/nathco/Office-Code-Pro]

	Inconsolata [https://github.com/googlefonts/Inconsolata]

	DejaVu Sans Mono [https://github.com/dejavu-fonts/dejavu-fonts]

	Droid Sans Mono [https://github.com/chrissimpkins/codeface/tree/master/fonts/droid-sans-mono]

	Source Code Pro [https://github.com/adobe-fonts/source-code-pro]

Paid Fonts

	Operator Mono [https://www.typography.com/fonts/operator/styles/]

	Dank Mono [https://dank.sh/]

	PragmataPro [https://www.fsd.it/shop/fonts/pragmatapro/]

Installing Fonts

On Ubuntu

Even on same OS, installation procedure can vary between different fonts. On ubuntu, open type fonts generally live in /usr/share/fonts/opentype/ folder.

	To install Fira Code you can simply type:

$ sudo apt install fonts-firacode

	However, this often downloads older version of the font. Recently they released a sleeker version 2.0 of the font. To install that, download the font from here. [https://github.com/tonsky/FiraCode/releases/download/2/FiraCode_2.zip]. Unzip the font folder and go to otf folder. Then simply run:

$ sudo cp -a . /usr/share/fonts/opentype/firacode

Extensions 🤖

You’ve already seen extensions like themes, keymaps, code runner etc in action. These modules can take your coding experience beyond what the builtins can offer. Here is an inexhaustive list of a few awesome extensions that will help you to make your python workflow more optimized.

	Code Runner: [https://marketplace.visualstudio.com/items?itemName=formulahendry.code-runner] Runs code snippet or code file of many popular languages like C, C++, Java, JavaScript, PHP, Python, Perl, Ruby, Go, Lua, Groovy, PowerShell etc.

	Better TOML: [https://marketplace.visualstudio.com/items?itemName=bungcip.better-toml] Syntax highlighting for .toml files

	docs-yaml: [https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml] YAML schema validation and auto-completion

	DotENV: [https://marketplace.visualstudio.com/items?itemName=mikestead.dotenv] Support for dotenv file syntax

	Githistory: [https://marketplace.visualstudio.com/items?itemName=donjayamanne.githistory] View git log, file history, compare branches or commits

	hide-gitignored: [https://marketplace.visualstudio.com/items?itemName=npxms.hide-gitignored] Hide files from the file Explorer that are ignored by your workspace’s .gitignore files

	Pytest IntelliSense: [https://marketplace.visualstudio.com/items?itemName=Cameron.vscode-pytest] Provides autocompletion for pytest

	pytest-snippets: [https://marketplace.visualstudio.com/items?itemName=jairhenrique.pytest-snippets] Snippet and templates for pytest

	Rainbow Brackets: [https://marketplace.visualstudio.com/items?itemName=2gua.rainbow-brackets] Provide rainbow colors for the round brackets, the square brackets and the squiggly brackets. This is particularly useful for Lisp or Clojure programmers, and of course, JavaScript, and other programmers. The isolated right bracket will be highlighted in red.

	Rainbow CSV: [https://marketplace.visualstudio.com/items?itemName=mechatroner.rainbow-csv] Highlight CSV and TSV files in different colors, Run SQL-like queries

	Rainbow End: [https://marketplace.visualstudio.com/items?itemName=jduponchelle.rainbow-end] This extension allows to identify keyword / end with colours.

	Indent-rainbow: [https://marketplace.visualstudio.com/items?itemName=oderwat.indent-rainbow] This extension colorizes the indentation in front of your text alternating four different colors on each step. Some may find it helpful in writing code for Nim or Python.

	reStructuredText: [https://marketplace.visualstudio.com/items?itemName=lextudio.restructuredtext] reStructuredText language support (RST/ReST linter, preview, IntelliSense and more)

	Docker: [https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker] Adds syntax highlighting, commands, hover tips, and linting for Dockerfile and docker-compose files.

	Bookmarks: [https://marketplace.visualstudio.com/items?itemName=alefragnani.Bookmarks] Mark lines and jump to them

	TODO Highlight: [https://marketplace.visualstudio.com/items?itemName=wayou.vscode-todo-highlight] Highlight TODO, FIXME and other annotations within your code.

	autoDocstring [https://marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring] Generates python docstrings

Settings ⚙️

All your settings and preferences are kept in settings.json file. You can directly manipulate that file to set your preference locally or globally. Locally the settings file can be found in .vscode/settings.json folder in your current project location. To see the global settings.json, head over to $HOME/.config/Code/User/settings.json and open it in VS Code. If you haven’t changed any of the default settings, the file should be empty or almost empty.

Syncing Your Settings & Extensions

You don’t want to set up VS Code from scratch every time you change your machine or do a fresh installation of your OS. In such scenarios, Settings Sync comes to rescue. You can set it up once, sync your settings and restore the settings with a few click. This will restore all of your settings, extensions, themes and other preferences. To do so,

	Search and install Settings Sync from the extension panel

	Login with your github credentials

	Press ctrl+Shift+P to open the command prompt and select Sync: Update/Upload Settings option to upload your settings and save to a github gist

	If you are restoring the settings to a freshly installed VS Code, just select Sync:Download Settings and you should see your VS Code getting restored

Shut up & Let Me Replicate Your Settings

If you don’t want to go through the hassle of manually installing all these extensions and like my settings. You can replicate my settings with the help of Settings Sync too. To do so:

	Go to the settings panel and search setting sync

	Find Sync:Gist option and replace it with eec019bccd9c49388eaf9eeaf08c19ec (This is the gist id of my settings)

	Then go to command prompt and select Sync:Download Settings option

	It will take some time to restore all the settings and you should see a setup similar to the following screenshots:

[image: Imgur]
[image: Imgur]

P.S.: This settings is a modified version of Kenneth Reitz’s [https://www.kennethreitz.org/] VS Code settings. Special thanks to him open sourcing that on twitter.

Customizing the Settings According to Your Need

After you’ve synced the above settings, you can easily change the themes, font sizes according to your liking. However, if you want to sync the settings via Settings Sync, you have to change back the github gist id and replace that with your own id. To do so:

	Go go to https://gist.github.com and find the gist name cloudSettings

	Check you url bar which should show something like this:

git.github.com/<username>/gist_id

	Copy your own gist id and replace that in Sync:Gist (In settings)

Now you can customize the workspace with your heart’s content and sync accordingly.

A few Points to Note:
If you have replicated my settings, you have to:

	Replace my github credentials with yours in the settings.json file

	Change and add your own Flake8 and Black path for them to work (See it here. [https://py-vscode.readthedocs.io/en/latest/files/linting.html#setting-up-linters-in-vs-code])

Index

Debugging

VS Code makes python debugging a breeze. The simplest python debugging workflow usually consists of the following steps:

	Setting breakpoints at the points of interest

	Inspecting the variables

	Stepping through code

Let’s dive in to see how these can be achieved in VS Code.

Debugging via PDB (Python Debugger)

From python 3.7 you can just write breakpoint() in places where you want to stop your script for inspecting. You can add multiple breakpoints to cater your specific debugging needs. Adding necessary breakpoints and running the script (Ctrl+Atl+N) will open up the native Pdb (python debugger) in the integrated terminal. To inspect variables, just type the name of the variable in the Pdb prompt.

[image: Imgur]

Your script will stop at the first breakpoint. You can either comment and uncomment your breakpoints or you can use Pdb specific commands for moving around and doing granular debugging. Here is a list of a few commands that can be used to inspect code in the Pdb prompt:

	l : The list(l) command will show you the code line that the Python interpreter is currently on. If you want to navigate to different lines of your code, the l command takes line number as an argument. For example, writing something like l 10 will take you to near the 10th line of your code.

[image: Imgur]

	u & d : Up(p) and down(d) are the two commands needed to navigate through the call stack. This commands can show you who is calling the current function or why the interpreter is going this way.

	s & n : Step(s) and Next(n) help you continue the execution line by line. However, n command can’t go outside of a function but s command can go deeper.

	b : Break(b) command can help you to add new breakpoints without changing the source code.

	pp : Pretty prints the value of an expression

	q : Quits(q) or exits the program.

	r : Continues the execution until the function returns.

Using VS Code’s Built in Debugger

Adding Breakpoints to Your Script

Instead of peppering your code with multiple breakpoint() functions, you can use VS Code’s built in breakpoint feature. Navigate to the line number of your script where you want to place a breakpoint and hover over the line number. You should be able to see a red dot appear. Click to place a breakpoint and click again to remove a breakpoint.

[image: Imgur]

Running Script in Debugging Mode

To run your script in debugging mode,

	Click the debug icon on the left most stripe and at the top bar, look for a green icon with DEBUG written beside it.

[image: Imgur]

	Click on the Add Configuaration beside the DEBUG button and select `Python: Current File option.

[image: Imgur]

	Click on the green DEBUG button to run the script in debugging mode. Alternatively, you can just press F5 to run the current script in debugging mode.

	When you run your script in debugging mode, it stops at the first breakpoint. VS Code highlights the active breakpoint.

[image: Imgur]

	The left panel of debugging model has Four panels

	Variables: While running your script in debugging mode, you can click the dropdown on the variable panel and inspect the variables and their corresponding values.

[image: Imgur]

	Watch:

	Callstack:

	Breakpoints:

	Using the debug toolbar for inspecting code line by line (mention that the debug toolbar is also draggable)

	Using the DEBUG CONSOLE for evaluating variables and more experimentation

 _static/file.png

_static/minus.png

_images/PW47gQS.png
») File Edit Selection View Go Debug Terminal

@ EXPLORER
\ OPEN EDITORS
/o ~ DEMO
M myenv

B

)
“o

O €& o

Help

demo - Visual Studio Code

current: /myenv/bin/python3
Python 2.7.16 64-bit
Just/bin/python

Python 2.7.16 64-bit
/bin/python

Python 3.7.3 64-bit (base': conda)
~/miniconda3/bin/python

Python 3.7.3 64-bit (testeny': conda)
~/miniconda3/envs/testenv/bin/python

Python 3.7.3 64-bit ('ts': conda)
~/minicondas3/envs/ts/bin/python
Python 3.7.3 64-bit
Just/bin/python3

Python 3.7.3 64-bit

/bin/python3

Python 3.7.3 64-bit (myenv': venv)
/myenv/bin/python

Python 3.7.4 64-bit (tf-gpu’: conda)
~/miniconda3/envs/tf-gpu/bin/python

Python 3.7.4 64-bit (torch-gpu’: conda)
~/minicondas/envs/torch-gpu/bin/python

PROBLEMS.

ouTPUT

DEBUG CONSOLE TERMINAL

redowan@pop-os:~/code/demo$ python3 -m venv myenv
redowandpop-os:~/code/demo$ source myenv/bin/activate
(myenv) redowanapop-os:~/code/demo$ ||

% o

Python 3.7.3 64-bit (myenv:venv) €0 A0 No project

1: bash

+ 0 @ ~ x

Formatting:v @ A

_images/Q8tX7Ro.png
Python » Formatting: Black Path

Path to Black, you can use a custom version of Black by modifying this setting to include the full path.

/home/redowany.local/bin/black

Python » Formatting: Provider
Provider for formatting. Possible options include ‘autopeps’, ‘black’, and 'yapf'.

black v

_images/Hv5aRxh.png
PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL

redowanapop-os:~/code/deno$ python3 -m venv myenv
redowanapop-o0s:~/code/deno$ source myenv/bin/activate
(myenv) redowanapop-os:~/code/demo$ pip install loguru
Collecting loguru
Using cached https://files.pythonhosted.org/packages/d5/db/669c5927e31c47clcf5beef7ee
ru-0.3.2-py3-none-any.whl
Installing collected packages: loguru
Successfully installed loguru-0.3.2
(myenv) redowanapop-os:~/code/demo$

.

_static/plus.png

_images/MqoKcqQ.png
summation = summation + sum([i % i for i in range(100)])

@ demopy x W settings B Keyboard shortcuts
" demopy > .
1 import functools
2 from timeit import time
3 |
4
5 def time_waster():
6 summation = 0
7 for _ in range(100):
8
9 return summation
10
11
12 if _ _name__ "__main__":
13 start_time = time.time()
14 # run- function
15 value = time_waster()
16 end_time = time.time()
17

print(f"Run time of {time_waster.

_ name__} is {end_time-start_time} seconds")

_images/YGceReL.png
Python Linting: Flakes Enabled
/' Whethertolint Python files using flakes

Python s Linting: Flakes Path

Path to flake8, you can use a custom version of flake8 by modifying this setting to include the full path.

/home/redowan/.local/bin/Flakes

_images/ZVtW5Sw.png
) FEile Edit Selection View Go Debug Terminal Help

LD EXPLORER >select interpreter]

 OPEN EDITORS

/O v DEMO

Python: Select Interpreter

demo - Visual Studio Code

recently used

M myenv
no
]
- show All Commands ~ ctrl + shift + P
GotoFile ctrl + P
O
Find in Files ctrl + shift + F
Start Debugging F5
Toggle Terminal ctrl + °
PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL 1: bash + 0 @ ~ x
redowan@pop-os:~/code/demo$ python3 -m venv myenv
redowandpop-os:~/code/demo$ source myenv/bin/activate
(myenv) redowanapop-os:~/code/demo$ ||
B e

Python 3.7.3 64-bit (myenv:venv) €0 A0 No project

Formattingv @ A

_images/TtYbXeI.png
File Edit Selection View Go Debug Terminal

X
o | B
\/ OPEN EDITORS
/O X @@ repo_actions.py protomate
 PROTOMATE
W _github
i} M demo
4l protomate
-@} @ _init_.py
@ cli_prompts.py
@ languages.py
@ repo_actions.py
@ repo_auths.py
@ script.py
@ utils.py
M tests
4 gitignore
@ poetry.lock
B pyproject.toml
@ README.md
B3 script.sh

)
“o

O €& o

i

> OUTLINE

Pmaster O A Select Python Interpreter

Help repo_actions.py - protomate - Visual Studio Code - X
@ repo_actionspy % e B D> » O
" protomate » @ repo_actions.py
5 1 from github import Github
2 import sys
3 import os
N 4 from protomate.languages import PROGRAMMING_LANGUAGES
5 import subprocess
6 from github.GithubException import GithubException
7 from protomate.utils import logfunc
: 8
9
10 @logfunc
11 def create_local_repo(repo_name):
12 """Creates a local directory
13
14 Parameters
15 = =
16 repo_name : str
17 Desired repository name.
18
19
20 try:
21 os.mkdir(repo_name)
22
23 except FileExistsError:
proBLEMS @) OUTPUT DEBUGCONSOLE TERMINAL 1:bash v+ 0@ ~ x
redowan@pop-os: ~/code/protomate$ [|
©5A0 mNoproject Ln1,Col1 Spaces:4 UTF-8 LF Python FormattingX @ M

_images/UitPn9B.png
® v o O

0D & o &R

EXTENSIONS: MARKETPLACE

code runner|

Code Runner 0.5.14
Run C, C++, Java, JS, PHP, Python, Pe.
JunHan @

Java Test Runner 0200
Run and debug JUnit or TestNG test ..
Microsoft Cinstall
Code Runner 036

RUN C, C++, Java, JS, PHP, Python, Pe.

wangeuni stall

Prettier - Code formatter 2.3.0

VS Code plugin for prettier/prettier
Esben Petersen Cinstall
Runner 0.1.16

Run various scripts.

Yasuhiro Matsumoto install
Chinese (simplified) Langua... 1390
i (f&E)

Show All

_images/b272FI5.png
@ demopy x W settings B Keyboard shortcuts
" @ demopy > () time
1 import functools
2 from timeit import time
3 def time_waster():
4 summation = 0
5 for _ in range(100):
6 summation = summation + sum([i % i for i in range(100)])
7 return summation
8

if __name__="__main__":
9 start_time = time.time()
10 # run- function
11 value = time_waster()
12 end_time = time.time()
13 print(f"Run time of {time_waster.__name__} is {end_time-start_time} seconds")

_images/esscMKH.png
%) Eile Edit Selection View Go Debug Terminal Help cli_prompts.py - protomate - Visual Studio Code - X

o @ cli_prompts.py % e > » O
protomate > @ cli_prompts.py
jol 1 import questionary
2 from prompt_toolkit.styles import Style
pad 3 import sys
4 from protomate.repo_auths import is_pass_saved, save_pass, retrieve_pass
B 5 import art
6 from sty import fg, rs
=i 7 from termcolor import cprint
8 import colorama
N 9 from protomate.utils import logfunc
10
& 11 colorama.init(strip=not sys.stdout.isatty’)ﬂ
12 -
D 13

14 @logfunc
15 def draw_ascii_banner():

16 e
17 Draw Protomate banner !!!
18 e
19 text = "ProtomatE"
20 ascii_banner = art.text2art(text, font="glenyn-large")
21 ascii_banner = fg(255, 213, 128) + ascii_banner + fg.rs
22
23 cprint(ascii_banner, attrs=["bold"])
PROBLEMS @) OUTPUT DEBUGCONSOLE TERMINAL 1:bash v+ 0@ ~ x

redowan@pop-os: ~/code/protomate$ [|

&

Dmaster S A Select Python Interpreter €3 A 0 B No project Ln11,Col45 Spaces:4 UTF-8 LF Python Formatting:X @ M

_images/Aj7bDpA.png
@ DEBUG b Python: CurrentFile v 5 @ demopy X @ concurpy @ s> 2 ¥ T O 0 @ synchronous.py
* VARIABLES @ demopy >
| vieak 7 summation = summation + sum([i * i for i in range(100)])
end_time: 1571818030.6719148 s
start_time: 1571817999.712377 8 return summation
I} > time: <module 'time' (built-in)> 9
> time_waster: <function time_waster at ex7fdef. 10
R value: 32835000 11 if _name__ = "__main__":
> _builtins_: {'ArithmeticError': <class 'Ari. 12 _start_time =_time.§me()
no cached__: None -
! __doc__: None 13)
0 __file__: '/home/redowan/code/demo/demo. py" 14 # run f”"?“"”
_ TesEr_s e e 15 value = time_waster()
) o gy 16
L4 —package__: ' 17 end_time = time.time()
o —FEEf e D 18 | print(f"Run time of {time_waster._ name__} is { end_time-start_time } seconds")

 WATCH 19

_images/DEyLFS6.png
@ demopy x W Extension: Python @ concurpy @ utils.py @ synchronous.py @ asynchronous.py B Keyboard shortcuts ¢ >
@ demopy >

4 def time_waster():

5 summation = 0

6 for _ in range(100):

7 summation = summation + sum([i % i for i in range(100)])
8 return summation

9
10
11 if __npame__ = "_ main__":
12 start_time = time.time()
13 breakpoint()
14 # run- function
15 value = time_waster()
16
17 breakpoint()
18 end_time = time.time()
19 print(f"Run time of {value._ name__} is { end_time-start_time } seconds")
PrOSLEMS @) OUTPUT DEBUGCONSOLE TERMINAL 1:python v+ D ®
redowan@pop-o0s source /home/redowan/miniconda3/bin/activate

(base) redowan@pop-o0s conda activate async

(async) redowan@pop-os /home/redowan/miniconda3/envs/async/bin/python /home/redowan/code/demo/demo.py
> /home/redowan/code/demo/demo. py(15)<module>()

-> value = time_waster()

(Pdb) value

*%x NameError: name 'value' is not defined

(Pdb) start_time

1570702425.1846874

(Pdb)

_images/2AMGs7B.png
@ DEBUG D Python: Current File ¥ %

 VARIABLES

_images/3QVRiqp.png
 OPEN EDITORS

v DEMO

> OUTLINE

Show All Commands

Go to File
Find in Files
Start Debugging

Toggle Terminal

ctrl

ctrl

ctrl

Fs

ctrl

+

+

shift + P

shift + F

_images/FQMsAvQ.png
-> value = time_waster()

(Pdb) 1

10

11 if __name__ == "__main__":
12 start_time = time.time()
13 breakpoint()

14 # run function

15 -> value = time_waster()

16

17 breakpoint()

18 end_time = time.time()
19 print(f"Run time of {value.__name__} is {(end_time-start_time)} seconds")
[EOF]

(Pdb)

_images/mCyXVlj.png
P R —

redowan@pop-os:~/code/demo$ whereis flake8
flake8: /home/redowan/.local/bin/flake8
redowan@pop-os:~/code/demo$ whereis black
black: /home/redowan/.local/bin/black
redowanapop-os:~/code/demo$

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Setting up VS Code on Your Machine 🐶

 		
 Installing VS Code

 		
 Running VS Code

 		
 Using the Integrated Terminal

 		
 Setting up Environments 🌲

 		
 Why Environments are Necessary

 		
 Conda Environment

 		
 Installing Anaconda Distribution

 		
 Creating Conda Environment

 		
 Activating Conda Environment

 		
 Deactivating Conda Environment

 		
 Virtual Environment

 		
 Installing python3-venv

 		
 Creating Virtual Environments

 		
 Activating Virtual Environments

 		
 Deactivating Virtual Environment

 		
 Selecting & Switching Between the Environments in VS Code

 		
 Installing Third Party Packages

 		
 Running Python Scripts with Code Runner 🏃

 		
 Installing Code Runner Extension

 		
 Setting up Code Runner

 		
 Running Python Scripts

 		
 Linting & Formatting 🎀

 		
 Flake8

 		
 Black

 		
 Setting Up Linters in VS Code

 		
 Shortcuts and Keymaps 💻

 		
 Changing the Default Keymaps

 		
 Adopting Keymaps from Other Editors

 		
 A Few Important Shortcuts (On Linux)

 		
 Themes 🐙

 		
 Awesome Dark Themes

 		
 Awesome Light Themes

 		
 Installing Themes

 		
 Fonts 🕹️

 		
 List of Awesome Fonts

 		
 Free Fonts

 		
 Paid Fonts

 		
 Installing Fonts

 		
 On Ubuntu

 		
 Extensions 🤖

 		
 Settings ⚙️

 		
 Syncing Your Settings & Extensions

 		
 Shut up & Let Me Replicate Your Settings

 		
 Customizing the Settings According to Your Need

_images/0m1jWvZ.png
DEBUG D Python: Current File ¥ %

* VARIABLES

> time: <module 'time' (built-in)>

> time_waster: <function time waster at x7fled..
> util:

<module 'utils' from '/home/redowan/co..
> _builtins__: {'ArithmeticError': <class 'Ari..
__cached__: None

None

__file_: '/home/redowan/code/demo/demo. py"
__loader__: None

__name__: '__main__'

__package__: ''

__spec__: None

_images/ryh8b7f.png
11
12
13
14
15
16
17
18
19

if __name__ = "__main__":

start_time = time.time()

run- function
value = time_waster()

end_time = time.time()

print(f"Run time of {value._ name__} is {(end_time-start_time } seconds")

_images/1a7P3Mc.png
code runner terminal 49 settings Foun

User Workspace

 Text Editor (3)

Code-runner: Run In Terminal
Minimap (3)

/ Whether to run code in Integrated Terminal.
v Features (44)

Debug (2)
Terminal (42) Code-runner: Terminal Root

 Extensions (2) For Windows system, replaces the Windows style drive letter in the command with a Unix style root when using a custom shell as
Run Code confi... (2) the terminal, like Bash or Cgywin. Example: Setting this to ’/mnt/" will replace 'C:\path’ with ‘/mnt/c/path’

Terminal» Integrated » Env: Osx

Object with environment variables that will be added to the VS Code process to be used by the terminal on macos. Set to null to
delete the environment variable.

Editin settings.json

_images/wmhZevQ.png
@ demopy x W settings B Keyboard shortcuts > »r O

@ demopy >
1 import functools

2 from timeit import time
3
4 def time_waster():
5 summation = 0
6 for _ in range(100):
7 summation = summation + sum([i % i for i in range(100)])
8 return summation
9
10 [if __name__="_ main_":
® demo.py 3 of 5 problems 11X

expected 2 blank lines after class or function definition, found 1 flake8(E305)

11 start_time = time.time()
12 % run- function

_images/oD19vWb.png
@ demopy X & > >
@ demopy >

4 def time_waster():

5 summation = 0

6 for _ in range(100):

7 summation = summation + sum([i % i for i in range(100)])
8 return summation

9
10 if __name__ ="_ main__":
11 start_time = time.time()
12 # run- function
13 value = time_waster()
14 end_time = time.time()
15 print(f"Run time of {time_waster._ name__} is {end_time-start_time} seconds")
16 |
PROBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL 2: Code v+ 0w

(myenv) redowanapop-os:~/code/demo$ python -u "/home/redowan/code/demo/demo.py"
Run time of time_waster is 0.002201557159423828 seconds
(myenv) redowan@pop-os:~/code/demo$ []

_images/0YGaq3z.png
) FEile Edit Selection View Go Debug Terminal Help demo - Visual Studio Code

- X

@ EXPLORER
 OPEN EDITORS
/O DEMO
no
]
(4
PROBLEMS ~OUTPUT DEBUGCONSOLE TERMINAL 1:bash v+ 0@ ~ x

redowanapop-os :~/code/demo$ []

% pomm

©O0A0 BNoproject Formatting:v @ A

_images/pFE90m8.png
@ demo.py B Keyboard Shortcuts X

Type to search in keybindings

Command

(GLCM) Choose commit message from last messages
(GLCM) Load last commit message
Add Cursor Above
Add Cursor Above
N\ Add cursor Below
Add Cursor Below
Add Cursors to Line Ends.
Add Line Comment
Add selection To Next Find Match
Auto Fix.

Keybinding
cerl o+ 1 crl + L
ctrl + 1 cerl + 1

shift + Alt + UpArrow
il + shift + UpArrow
Ctrl + Shift + DownArrow
shift + Alt + DownArrow,
shife + Alt + 1

arl + K ad + C

crl + D

shift + Al + <

When

editorTextFocus

editorTextFocus

editorTextFocus

editorTextFocus

editorTextFocus

editorTextFocus &2 !editorReadonly
editorFocus

editorTextFocus & !editorReadonly &&

supportedCodeAction

¢ 0> O

/(\s|A)qui.

=

Source
Default
Default
Default
Default
Default
Default
Default
Default
Default
Default

=

_images/xQgXe3S.png
) File Edit Selection View Go Debug Terminal Help Extension: Cobalt2 Theme Official - demo - Visual Studio Code - X
@ EXTENSIONS: MARKETPLACE @ demo.py B Extension: Cobalt2 Theme Official X ¢ > O
cobalt2 . .
je Cobagt Cobalt2 Theme Official wessosenscoala
Cobalt2 Theme Official 2.1.6 o a
& OFficial theme by Wes Bos. WesBos | ©236225 | X %k kX % | Repository | License
Io wessos o & OFficial theme by Wes Bos.
e N NN R s extension s enabled stobally
-@- 'Youngju Jaden Kim -
gy Cobaltz-talic 002 Details Contributions
Italic theme for Cobalt2. Better sup... T L TV T T
Shobhit -
Cobalt2 Generic Fork 2.2.0
D A Cobalt2 Fork to be more generici. Visual Studio Marketplace V6]
) Augusto Cinstall
L 4 [DEPRECATED] Cobalt2 Theme 1.0.2 cee
A Cobalt2 the for VS Cod tirel... : N N :
o Rah‘:rfokh:r'“e orvsco “”E I% EXPLORER Js mail.js @ JS passport.js Js errorHandlers.js X =
-, ———
Cobalt2 Theme 00.3 4 OPEN EDITORs PRIV
Tweaked and refined theme based o... e 2 Catch Ennons Handlen
Kkamranmackey =) p ToP
A 3
FalconCobalt 0.08 @ JS mail.js handlers
SmEa ? 5 TS (e 3 With async/await, you need some way to catch ennons
FalconCobaltzain 008 Js errorHandlers.js handler. 5 Instead of using tny{} catch(e) {} in each contnollen, we wnap ti
Custom Cobalt2 theme: BOTTOM 6 catchEnnons(), catch and ennons they thnow, and pass it along to
Bader Almutairi Cinstall ®
s t.Jjs handl *]
Cobalt Next 0.1.5 passport.Jjs handlers 7 /
If Oceanic Next and Cobalt2 made a ® ¢ _nav.scss public/sass/pa.. 8
BT Cinstall [."I 4 45 - FINISHED APP
(TR a0 L] 9 exports.catchErrors = (fn) => {
Animproved combination of Cobalt .. » controllers 10 return function(re res, next)]
Parklife Cinstall b data q, i |
Ludem Dark Blue 023 + handlers 11 return fn(req, res, next).catch(next);
Dark blue theme modified from the Rl.
ludem Cinstall Js errorHandlers.js 12 ,
Dainty 1122 Js mail.js 13 2:
Streamlined versions of popular Vs
e —— =Bl Js passport.js Js passport.js & _nav.scss @
b models »~
1 $yellow: GaSd<I:ls; ~
{:o:} 4 public 3

0 B No project Formatting:v @

Python 3.7.3 64-bit (myenv’: venv)

_images/z5EWV5M.png
e

11 if __name__ = "__main__":

12 | start_time = time.time()

13

14 |-« # run- function

15 —
16

17 end_time = time.time()

18 | print(f"Run time of {time_waster.__name__} is { end_time-start_time } seconds")

19

